激光与光电子学进展

高非线性Bi₂O₃-GeO₂-Ga₂O₃光子晶体光纤性能 研究

谭芳¹, 许鹏飞², 周德春^{2*}, 杨强¹, 王丽丽¹, 宋向阳² '长春大学理学院, 吉林 长春 130022; ²长春理工大学材料科学与工程学院, 吉林 长春 130013

摘要 高非线性光子晶体光纤具有小纤芯、大折射率对比度的特点,采用Bi-Ge-Ga多组分激光玻璃材料作为纤芯 材料设计了特殊结构的高非线性光子晶体光纤。运用全矢量有限元法结合完美边界条件,得出该光子晶体光纤在 波长为1.55 μ m、1.80 μ m处的双折射系数分别为2.89×10⁻²与3.28×10⁻²。色散曲线表明,结构参数 $M=d/\Lambda$ 分 别为0.5和0.6的光子晶体光纤,当内包层椭圆空气孔椭圆率为0.6时有两个零色散点,呈现了负色散特性。在 1.55 μ m处,X偏振的限制损耗在3.8784×10⁻⁵~4.5739×10⁻⁵ dB•km⁻¹之间,Y偏振的限制损耗在3.5203×10⁻⁵~ 4.2147×10⁻⁵ dB•km⁻¹之间,为光通信、微结构光纤传感器等非线性光纤研究领域的研究提供了参考借鉴。 关键词 光纤光学;光子晶体光纤;高非线性;色散;双折射 中图分类号 TN253 **文献标志码 doi**: 10.3788/LOP202259.0306003

Research on Properties of Highly Nonlinear Bi₂O₃-GeO₂-Ga₂O₃ Photonic Crystal Fiber

Tan Fang¹, Xu Pengfei², Zhou Dechun^{2*}, Yang Qiang¹, Wang Lili¹, Song Xiangyang² ¹School of Science, Changchun University, Changchun, Jilin 130022, China; ²School of Materials Science and Engineering, Changchun University of Science and Technology,

Changchun, Jilin 130013, China

Abstract Highly nonlinear photonic crystal fiber has the characteristics of small core and large refractive index contrast. In this work, the photonic crystal fiber (PCF) with a special structure based on Bi_2O_3 -GeO₂-Ga₂O₃ core glass material was designed. Using full-vector finite element method while the perfect matched layer boundary condition, the birefringence coefficients of the PCF at the wavelengths of 1.55 µm and 1.80 µm are 2.89×10⁻² and 3.28×10^{-2} , respectively. The dispersion curve shows, when the ellipticity of the inner cladding elliptical air hole is 0.6, the photonic crystal fiber with structural parameters $M=d/\Lambda$ of 0.5 and 0.6 has two zero dispersion points, indicating it has negative dispersion characteristics. The limiting losses of X polarization and Y polarization at 1.55 µm are $3.8784\times10^{-5}-4.5739\times10^{-5}$ dB·km⁻¹ and $3.5203\times10^{-5}-4.2147\times10^{-5}$ dB·km⁻¹, respectively. This work provides reference for nonlinear optical fiber fields such as optical communication and microstructure optical fiber sensor.

Key words fiber optics; photonic crystal fiber; highly nonlinear; dispersion; birefringence

收稿日期: 2021-03-08; 修回日期: 2021-04-01; 录用日期: 2021-04-22

基金项目: 吉林省教育厅"十三五"科学技术项目(JJKH20200565KJ)、吉林省科技厅项目(20200401053GX) 通信作者: *paper_paper_2017@126.com

1引言

光子晶体光纤实现光在其芯内传播并进行可 控约束的必要条件是纤芯包层的"晶格化"排列以 及中心缺陷区的存在。这些"晶格化"的包层是由 不同截面形状、不同结构的介质孔排列而成的。描 述光子晶体的结构参数为空气孔直径、空气孔间 距、空气孔排列层数等。当这些结构参数形成非对 称状态时,会产生明显的双折射现象。双折射光子 晶体光纤在光通信、光控技术(交叉相位调制、孤子 自频移等非线性效应)、微结构光纤传感器以及特 种激光器[14]等领域均具有重要应用,成为国内的研 究热点。双折射系数方面,在1.55 µm 处,双折射系 数在8.71×10⁻³~0.24范围内^[5-12]。色散调控方面, 当外包层结构参数M=d/Λ足够大时^[13],光子晶体 光纤会出现两个零色散波长,文献[9]的研究实现 了在0.60~1.0 µm范围内,X、Y偏振态获得两种零 色散波长;文献[10]的研究实现了 $X-\lambda(1.52 \ \mu m \ \pi$ 2.19 μm)和 Y-λ(1.43 μm 和 2.12 μm)两种零色散; 文献[11]研究波长在1.50~1.60 µm 波段范围内,色 散值为(-549.2±5)ps/(km·nm),具有较高的负平 坦色散。限制损耗方面,文献[13]设计的六角点阵晶 格光子晶体光纤,低散射损耗为6.5×10⁻¹³ dB/m,弯 曲损耗为7.4×10⁻²⁰ dB/cm; 文献[14] 设计的正四 边形晶格分布的五层空气孔结构光子晶体光纤,限 制损耗达到 10⁻³ dB/m 量级。非线性系数研究方 面,文献[15]设计的中心缺陷孔非对称椭圆光子晶 体光纤,将第一层椭圆空气孔旋转90°,其X、Y偏振 态的非线性系数分别为 43.6 W⁻¹·km⁻¹和 41.71 W⁻¹·km⁻¹; 文献[16] 将其包层由圆形空气孔 按六角晶格结构排列而成,将最内层设计为4个椭 圆空气孔和2个小圆空气孔,非线性系数达到 109.65 $W^{-1} \cdot km^{-1}$

本文采用 Bi₂O₃-GeO₂-Ga₂O₃多组分玻璃^[17-18]作 为光子晶体光纤的纤芯材料,设计了一种八边形低 包层数的矩形纤芯结构光子晶体光纤(EBR-PCF), 并通过全矢量有限元法系统研究了其结构参数 $M=d/\Lambda$ 与椭圆空气孔的椭圆率对其双折射系数、 色散特性、限制损耗等特性的影响。通过上述参数 的调控,光子晶体光纤在1.55 μ m、1.80 μ m处有较 大的双折射系数,分别为2.89×10⁻²与3.28×10⁻²。 随着结构参数的变换,光子晶体光纤呈现了负色散 特性,说明其具有较好的色散补偿能力。结果表 明,该光子晶体光纤对光通信、微结构光纤传感器 等非线性光纤研究领域具有一定的参考意义。

2 基本原理

目前对于光子晶体光纤的研究方法主要包括 平面波法、时域有限差分法及全矢量有限元法 等^[19-20],其中全矢量有限元法是采用矩阵分析来列 出方程的数学方法,求解相关的联立代数方程组, 从而得到所需的解,并与完美匹配层边界配合,在 设定结构参数和工作波长后,进行光纤模场模拟实 验。双折射系数B由下式进行计算,

$$B = \left| \operatorname{Re}\left(n_{\text{eff}}^{x} \right) - \operatorname{Re}\left(n_{\text{eff}}^{y} \right) \right|, \qquad (1)$$

式中:n^x_{eff}和 n^y_{eff}分别为光纤基模在 x 轴、y 轴方向上 偏振态的传播模式的有效折射率; Re 为光纤基模有 效折射率的实部。根据光纤基模有效折射率 n_{eff}的 实部,对入射波的波长进行二次求导,即可得到色 散系数为

$$D(\lambda) = -\frac{\lambda}{c} \frac{d^2 \operatorname{Re}(n_{\text{eff}})}{d\lambda^2}, \qquad (2)$$

式中:λ为工作波长;c为光速;Re(n_{eff})为纤芯基模的 有效折射率实部;D(λ)为光纤基模的总色散系数, 包括材料的色散系数与波导色散,由(2)式可得出 总色散系数。光纤基模的非线性系数γ为

$$\gamma = \frac{2\pi}{\lambda} \cdot \frac{n_2}{A_{\text{eff}}},\tag{3}$$

式中:n₂为铋酸盐材料的非线性折射率;A_{eff}为基模的有效模场面积。A_{eff}可表示为

$$A_{\text{eff}} = \frac{\left(\iint \left| E(x, y) \right|^2 dx dy \right)^2}{\iint \left| E(x, y) \right|^4 dx dy}, \qquad (4)$$

式中:*E*(*x*,*y*)为光纤横截面的电场强度,积分区域 为整个光纤端面。

基模的限制损耗(Lloss)为

$$L_{\rm loss} = \frac{20k_0}{\ln 10} \,\mathrm{Im}\big(n_{\rm eff}\big),\tag{5}$$

式中: $Im(n_{eff})$ 为光纤基模有效折射率的虚部; $k_0 = 2\pi/\lambda$ 为自由空间中的波数。

3 模型仿真与结果分析

EBR-PCF断面设计如图1所示,构成空气孔的 材料为Bi₂O₃-GeO₂-Ga₂O₃多组分激光玻璃,折射率 为1.8965。空气孔排列为八边形,层与层之间的空 气孔排列成等腰三角形晶格,共有三层,在纤芯纵

图 1 EBR-PCF 断面结构图 Fig. 1 Section structure of EBR-PCF

向上,分别加了一层3孔并列的空气孔,相邻两层空 气孔的间距为 Λ =2.2 μ m,改变空气孔直径d的值, 得到不同的结构参数 d/Λ 。芯包层为椭圆空气孔围 成小矩形,其长半轴为0.6 μ m,改变短半轴的值,得 到不同的椭圆率e。内外包层构成简洁稳定结构, 且容易堆叠成预制棒。由于芯内包层空气孔的结 构设计及外包层的纵向排列形成了非对称性结构, EBR-PCF的横断面形成非对称传播,光波会发生 明显的线偏振,形成双折射现象。图2为M=0.5,

e=0.6的EBR-PCF 通过1.55 μm 光波的电模场, 有效模场形状为椭圆,双折射系数大于10⁻²量级(具体分析见3.1节)。

图 3 为模场的电能量分布曲线,当外包层空气 孔采用八边形代替六边形结构后,模场被有效地限 制在纤芯内。结构形式上,在紧贴缺陷区外围的 上、下各增设三个并列的圆形空气孔,起到了强化 光子禁带的作用,减少了光能的泄漏。图 3 也反映 出光功率密度呈非线性变化。

3.1 双折射特性

光子晶体光纤的结构参数 $M=d/\Lambda$,芯内椭圆 空气孔的椭圆率为e=b/a。当e取0.4时,M分别 为0.5、0.6,得到X、Y偏振的折射率曲线,图4(a)为 X偏振的有效折射率,图4(b)为Y偏振的有效折射 率。图中曲线可以看出,X偏振的有效折射率明显 小于Y偏振。在椭圆率和工作波长不变的情况下, M=0.5 和 M=0.6的偏振模场基本相同。X和Y 偏振态有效折射率曲线的对应折射率差小于10⁻⁵量 级。这一现象说明在对称性方面,结构参数M=0.5与M=0.6相比较没有明显改变,禁带效应几乎

图4 EBR-PCF的有效折射率曲线。(a) X偏振;(b) Y偏振

Fig. 4 Effective refractive index curves of EBR-PCF. (a) X polarization; (b) Y polarization

研究论文

相同,对模场的有效折射率影响不明显。因此,接下来研究的侧重点是椭圆率变化对折射率的影响。

为了保证光纤在较短的轴向长度上发生较大的偏振,从而获得较高的双折射率,在纤芯的矩形空间中,加大了横向宽度,即X轴的占空比明显大于 Y轴。图5给出了工作波长在1.05~1.80 μm范围内,*M*分别取0.4、0.5、0.6,对应的椭圆率分别取0.3、0.4、0.6的六种EBR-PCF的折射率曲线。 图5(a)为X偏振的有效折射率,图5(b)为Y偏振的有效折射率。由图5可明显看出,在1.05~1.80 μm 范围内,各种结构EBR-PCF均能产生稳定的偏振 模场,而且随着波长的增加,折射率呈现线性递减 规律,且在相同条件下,Y偏振态的有效折射率明显 大于X偏振态,这与前面的分析相符;结构参数无论 取0.5还是0.6,当*a*=0.6 μm时,随着椭圆率的增 大,Y偏振的有效折射率依次减小。当椭圆率为 0.3时,Y偏振的有效折射率相对最大。这与芯内 包层的形状、结构参数*e*的不对称程度有关。最后, 当工作波长大于1.90 μm时,不能形成双折射模场, 甚至模场逐渐衍变成环型模、渗漏至空气孔包层之 间,最终分裂导致偏振态紊乱。

图 5 不同椭圆率 EBR-PCF 的有效折射率曲线。(a) X偏振;(b) Y偏振

图 6 所示为 EBR-PCF 双折射系数与波长之间 的关系。由图中曲线可知,当椭圆率为0.3时, X_XY 均具有较高的有效折射率;当椭圆率为0.6时,双折 射系数出现最大值。波长为1.55 μ m处的双折射系 数为 $B=2.89\times10^{-2}$,波长为1.80 μ m处的双折射系 数为 $B=3.28\times10^{-2}$ 。中红外波段的双折射系数迅 速增大。当结构参数M为0.5,椭圆率为0.6时, EBR-PCF 有很高的双折射系数,高于文献[6-9]报

Fig. 6 Relationship between birefringence coefficient and wavelength of EBR-PCF

道的研究结果。

3.2 色散特性

色散管理在光通信领域具有重要的应用价值, 也是评价光子晶体光纤性能的重要指标^[21],光子晶 体光纤具有灵活控制色散范围、平坦度及反常色散 系数的能力,可由色散特性来分析。本文选择 Bi-Ga-Ge 多组分激光玻璃作为纤芯材料,铋酸盐玻璃 的非线性光学特性不同于石英玻璃,色散规律具有 特殊性。图 7(a)、(b)分别为不同结构参数的EBR-PCF下,X、Y两种偏振态的色散特性曲线。

由色散特性曲线的变化规律可知,X偏振态的 色散曲线与光子晶体光纤的结构参数M密切相关, 差异较大。色散系数在-80~60 ps•km⁻¹•nm⁻¹之 间。其中,M=0.6, $e=0.6 \pi M=0.4$,e=0.3两种 光纤的色散斜率较低、比较平坦。随着M从0.4增 大到0.6,两种偏振态的零色散点均向短波方向偏 移。结构参数分别为M=0.6,e=0.6、M=0.5,e=0.4、M=0.5,e=0.3、M=0.4,e=0.3的Y偏振态 均产生两个零色散点,且随着M的递减而向长波方 向移动。M=0.5,e=0.3、M=0.4,e=0.3 $\pi M=0$

0.6,*e*=0.6三种结构的光子晶体光纤均呈现了负 色散特性,该结果可为补偿光纤的设计提供选择 参考。

综上可知,本文设计的六种结构的光子晶体光 纤在 0.8~1.8 μm 范围内获得一定的零色散带宽, 说明 EBR-PCF 具有较强的零色散调控能力和色散 补偿能力,为提高零色散光子晶体光纤的设计提供 了选择方案,也为超连续谱长波光通信技术提供 借鉴。

3.3 限制损耗特性

限制损耗是光子晶体光纤的一种能量特征值, 在特定结构条件限制下的不良参数,其数值越小越 好。其中,特定结构条件包括模场中光子禁带中心 的缺陷区面积、芯包层空气孔层数、材料密度等。降 低限制损耗的措施主要为增加空气孔层数、改变包 层边界形状等方法。但是,太复杂的结构会增加光

子晶体光纤制备的难度。综合考虑到上述因素,设 计了边界为八边形的3~4层空气孔包层,内包层空 气孔加密的结构框架,通过调整结构参数和椭圆率来 改善限制损耗。图 8(a)、(b)分别为不同结构 EBR-PCF的X与Y限制损耗曲线。同结构 EBR-PCF 的限制损耗均在1.5×10⁻⁵~5.0×10⁻⁵ dB·km⁻¹ 范围内。随着结构参数和椭圆率的增大,即包层空 气孔直径增大而芯包层晶格椭圆空气孔的短半轴减 小时,限制损耗增高。在Y限制损耗曲线中,当椭圆 率不变时,结构参数的增加对限制损耗几乎没有影 响,限制损耗随波长的增大而增大。在1.55 μm处, X偏振的限制损耗在 3.8784×10⁻⁵~4.5739× 10⁻⁵ dB·km⁻¹, Y偏振的限制损耗在 3.5203×10⁻⁵~ 4.2147×10⁻⁵ dB·km⁻¹。当包层空气孔直径一定时, 纤芯边界空气孔的椭圆率较小时限制损耗较低,均 在10-5量级,低于其他文献的研究结果。

图 8 不同结构 EBR-PCF 的限制损耗曲线。(a) X偏振;(b) Y偏振 Fig. 8 Limiting loss curves of EBR-PCF with different structures. (a) X polarization; (b) Y polarization

3.4 非线性系数

非线性较高的光子晶体光纤可以使入射光信 号在短距离内(数10 cm)获得光谱宽度几百纳米的 超连续谱,应用于通信系统中的波分复用器及精确 频率传感测量等。根据非线性系数的定义式可知, 光子晶体光纤有效模场面积越小,非线性系数越 大。模场的光功率密度越高,非线性系数越大。本 文选用Bi-Ge-Ga多组分激光玻璃为纤芯材料,其非 线性折射率比石英玻璃高 2~3个数量级^[22], n_2 取值 为1.8×10⁻¹⁸ m²·W⁻¹。通过模拟计算,得到了六组 参数:(1) *M*=0.6, *e*=0.6;(2) *M*=0.6, *e*=0.4; (3) *M*=0.5, *e*=0.6;(4) *M*=0.5, *e*=0.4;(5) *M*= 0.5, *e*=0.3;(6) *M*=0.4, *e*=0.3。这六种参数在工 作波长1.55 µm 处的 x_y 偏振的有效模场面积 A_{eff}^x , A_{eff}^y 与非线性系数 $\gamma_x \gamma_y$ 如表1所示。由表1计算结 果可知,当结构参数为0.5时,X偏振模场中椭圆率 与非线性系数呈负相关,Y偏振模场中呈正相关;当 结构参数小于0.5时,模场的非线性系数变小;当结 构参数为0.6、椭圆率为0.6时,非线性系数最大;且 在1.55μm波长处,EBR-PCF的非线性系数达到了 10³量级,高于文献[15-16]的研究结果,本文对于非 线性光纤的研究具有一定的参考价值。

表1 1.55 µm 处不同结构光子晶体光纤的模场有效面积和非线性系数

$M=d/\Lambda$	$A_{ m eff}^x/\mu{ m m}^2$	$\gamma_x / (10^3 \text{ W}^{-1} \cdot \text{km}^{-1})$	$A_{ m eff}^{ m y}/\mu{ m m}^2$	$\gamma_y / (10^3 \mathrm{W}^{-1} \cdot \mathrm{km}^{-1})$
(1)	2.2297	3.2828	2.3412	3.1266
(2)	2.2311	3.2808	2.1953	3.3343
(3)	2.4136	3.0327	2.1759	3.3641
(4)	2.5841	2.8327	2.5818	2.8352
(5)	2.2311	3.2809	2.1492	3.4058
(6)	2.1372	3.4249	1.9433	3.7667

3.5 模场功率密度与温场分布

对于非线性光学材料及光子晶体光纤温度传感器来说,需要考虑如何提高激光损伤阈值。通过比较不同结构 EBR-PCF,当结构参数 $M=d/\Lambda$ 为 0.6,椭圆率为 0.6 时,非线性系数最高且限制损耗 很小,图 9 数据显示,该结构光子晶体光纤的模场功 率密度为 0.08 W· μ m⁻²。

高非线性光子晶体光纤在工作时由于能量集 中会产生热量,影响光纤的稳定性。本文对该光子 晶体光纤在输入功率为1W时1.55 µm处的模场温 度进行了仿真模拟,图10所示为温度场等温线, 图11为模场中心轴线的温度分布曲线。可以看出, 模场温度值以轴线为中心呈现高斯分布,模场中心 与边缘所构成的温度变化梯度很大。这一现象从 另一方面反映出EBR-PCF具有较高的非线性度。

从图 11 可以看出, EBR-PCF 的模场中心工作温度 比初始温度仅增加了 0.8 K, 这是由于高非线性产 生的模场能量集中引起的温度变化且温度变化不 明显,可见本文设计的光子晶体光纤具有良好的工 作稳定性。因此,本文的研究可为非线性光学材料 及光子晶体光纤温度传感器的设计提供参考。

4 结 论

本文采用新型Bi₂O₃-GeO₂-Ga₂O₃多组分激光玻 璃材料设计了一种高非线性光子晶体光纤,开展了 仿真模拟与分析计算。采取三层八边形外包层空 气孔代替六边形外包层空气孔,可以有效地将模场 能量限制在纤芯中,增加光功率密度。由椭圆空气 孔围成矩形纤芯,在纵横几何轴线上存在明显的不 对称性,使X偏振态有效折射率大于Y偏振态。当 结构参数为0.5或0.6,椭圆率为0.6时,出现较大 的双折射现象。其中,波长为1.55 μm 与1.80 μm 处的双折射系数分别达到 2.89×10⁻²、3.28×10⁻²。 结构参数分别为M=0.6、e=0.6,M=0.5、e=0.4, M=0.5、e=0.3和M=0.4、e=0.3时的X偏振色 散曲线均产生两个零色散点,且随着结构参数的递 减而向长波方向移动,呈现了负色散特性,表明其 具有较好的色散补偿能力。由限制损耗曲线可知, EBR-PCF 的限制损耗随波长的增加而增大,在 1.55 μm 处, X、Y 偏振限制损耗分别为 3.8784× $10^{-5} \sim 4.5739 \times 10^{-5} \text{ dB} \cdot \text{km}^{-1} = 3.5203 \times 10^{-5} \sim 4.2147 \times 10^{-5} = 10^{-5} \times 10^{-5} \text{ cm}^{-1}$ 10⁻⁵ dB•km⁻¹,其EBR-PCF 的非线性系数达到了10³ 量级,而在给定包层空气孔直径且纤芯边界的椭圆 空气孔的椭圆率较小时,光纤限制损耗较低,均在 10^{-5} 量级。当结构参数 M=0.6、椭圆率 e=0.6时, 该光子晶体光纤的模场功率密度为0.08 W·µm⁻², 其模场中心工作的温度要比初始温度增加0.8K。 综上,本文设计的高非线性系数的双折射光子晶体 光纤获得了较高的双折射系数与非线性系数、较好 的色散调控能力、较低的限制损耗,可为光通信、微 结构光纤传感器以及高功率光纤激光器等非线性 光纤器件研究提供新的参考方案。

参考文献

- [1] Hong Y F, Wang Y Y, Ding W, et al. Research progress on polarization maintaining hollow core fiber
 [J]. Acta Photonica Sinica, 2019, 48(11): 1148010.
 洪奕峰,汪滢莹,丁伟,等.保偏空芯光纤的研究进 展[J]. 光子学报, 2019, 48(11): 1148010.
- [2] Zhang W, Bai B B, Zhang Y Z, et al. Sensing characteristics of near-infrared band based on new

photonic crystal fiber[J]. Chinese Journal of Lasers, 2021, 48(7): 0706001.

张文, 白冰冰, 张砚曾, 等. 基于新型光子晶体光纤 近红外波段的传感特性[J]. 中国激光, 2021, 48(7): 0706001.

- [3] Zhang T T, Shi W H. Numerical research on ultraviolet supercontinuum generation in photonic crystal fiber[J]. Chinese Journal of Lasers, 2020, 47(3): 0301012.
 张甜甜,施伟华.光子晶体光纤产生紫外超连续谱的 数值研究[J].中国激光, 2020, 47(3): 0301012.
- [4] Yang Z H, Pan S L. Recent research progress of design and prediction of new nonlinear optical crystals
 [J]. Journal of Synthetic Crystals, 2019, 48(7): 1173-1189.
 杨志华,潘世烈.新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189.
- [5] Lei G. Study on birefringence and confinement loss of photonic crystal fiber[J]. Modern Industrial Economy and Informationization, 2017, 7(22): 18-21.
 雷刚.光子晶体光纤双折射度及限制损耗特性研究 [J].现代工业经济和信息化, 2017, 7(22): 18-21.
- [6] Rong G H, Yi X S. Investigation on a new high birefringence photonic crystal fiber[J]. Semiconductor Optoelectronics, 2018, 39(2): 211-215.
 菜耕辉, 伊小素. 一种新型高双折射光子晶体光纤的 特性研究[J]. 半导体光电, 2018, 39(2): 211-215.
- [7] Li X L, Zhang S H, Liu X G. Finite element simulation of high nonlinear ultra-low loss birefringent PCF with flat dispersion[J]. Optical Communication Technology, 2020, 44(1): 58-62.
 李晓龙,张世宏,刘先国.色散平坦高非线性超低损 耗双折射 PCF 有限元仿真[J].光通信技术, 2020, 44 (1): 58-62.
- [8] Zou H, Ma L, Xiong H. Photonic crystal fiber with high birefringence and double zero-dispersion wavelengths[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120601.
 邹辉,马雷,熊慧.高双折射双零色散波长的光子晶 体光纤[J]. 激光与光电子学进展,2017,54(12): 120601.
- [9] Liu X A, Cheng H P, Jiao Z. Properties of regularlattice photonic crystal fiber based on a double-hole unit[J]. Laser Technology, 2019, 43(1): 48-52.
 刘旭安,程和平,焦铮.双孔单元四边形晶格光子晶 体光纤特性的研究[J]. 激光技术, 2019, 43(1): 48-52.
- [10] Yang T, Ding C, Guo Y J. A highly birefringent and nonlinear AsSe₂-As₂S₅ photonic crystal fiber with two zero-dispersion wavelengths[J]. IEEE Photonics Journal, 2019, 11(1): 1-7.

第 59 卷 第 3 期/2022 年 2 月/激光与光电子学进展

2018, 55(7): 070604.

- [11] Liao K, Liao JF, Xie YM, et al. A defect photonic crystal fiber with high birefringence and negative dispersion[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070604.
 廖昆,廖健飞,谢应茂,等.一种高双折射负色散的 缺陷型光子晶体光纤[J].激光与光电子学进展,
- [12] Zhang Y, Ge H B, Wu H, et al. Characteristic analysis of an elliptic double core photonic crystal fiber with high birefringence and low loss[J]. Optical Communication Technology, 2020, 44(5): 13-17.
 张怡,葛海波,吴昊,等.一种高双折射低损耗椭圆 双芯光子晶体光纤的特性分析[J].光通信技术, 2020, 44(5): 13-17.
- [13] Monir M K, Hasan M, Paul B K, et al. High birefringent, low loss and flattened dispersion asymmetric slotted core-based photonic crystal fiber in THz regime[J]. International Journal of Modern Physics B, 2019, 33(20): 1950218.
- [14] Zhang X D, Nie F K, Lu X L, et al. The characteristic analysis of microstructure photonic crystal fibers based on regular quadrilateral lattice[J]. Optical Instruments, 2017, 39(4): 18-24.
 张学典, 聂富坤, 逯兴莲, 等.基于正四边形晶格的 微结构光子晶体光纤的特性分析[J].光学仪器, 2017, 39(4): 18-24.
- [15] Yang T Y, Jiang H M, Wang E L, et al. Photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 350-354.
 杨天宇,姜海明,王二全,等.一种近红外波段的高 双折射高非线性光子晶体光纤[J]. 红外与毫米波学报, 2016, 35(3): 350-354.

- [16] YuJH, LiQH, YuCC. Optical properties analysis of photonic crystal fiber based on inner elliptical holes
 [J]. Study on Optical Communications, 2019(4): 36-39.
 于锦华,励强华,于程程.内包层椭圆孔光子晶体光
 纤光学特性分析[J].光通信研究, 2019(4): 36-39.
- [17] Song X Y, Jin D Y, Zhou D C, et al. Er³⁺/Yb³⁺ codoped bismuthate glass and its large-mode-area double-cladding fiber for 1.53 μm laser[J]. Journal of Alloys and Compounds, 2021, 853: 157305.
- [18] Song X Y, Han K X, Zhou D C, et al. Broadband $\sim 1.8 \ \mu m$ emission characteristics of Tm³⁺-doped bismuth germanate glass based on Ga₂O₃ modification [J]. Journal of Non-Crystalline Solids, 2021, 557: 120575.
- [19] Fujisawa T, Koshiba M. Finite element characterization of chromatic dispersion in nonlinear holey fibers[J]. Optics Express, 2003, 11(13): 1481-1489.
- [20] Zhang Y N, Miao R C, Ren L Y, et al. Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre[J]. Chinese Physics, 2007, 16(6): 1719-1724.
- [21] Zhang X J, Zhao J L, Cui L. Analysis of mode properties of photonic crystal fiber with high birefringence
 [J]. Acta Optica Sinica, 2008, 28(7): 1379-1383.
 张晓娟,赵建林,崔莉.一种高双折射光子晶体光纤的
 模式特性分析[J].光学学报, 2008, 28(7): 1379-1383.
- [22] Yu C L, Wang M, Feng S Y, et al. Research progress on ytterbium-doped large mode area photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170602.
 于春雷, 王孟, 冯素雅, 等. 掺镱大模场光子晶体光 纤的研究进展[J]. 激光与光电子学进展, 2019, 56 (17): 170602.